Difference between revisions of "Shifting problem"

From timescalewiki
Jump to: navigation, search
Line 6: Line 6:
 
The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).
 
The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).
  
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\displaystyle\int_{t_0}^t \hat{f}(t,\sigma(\xi))\Delta \xi=\displaystyle\int_{t_0}^t f(\xi) \Delta \xi,$$
 +
where $\hat{f}$ denotes the solution of the [[shifting problem]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
=Examples=
 
{| class="wikitable"
 
{| class="wikitable"
 
|+Time Scale Shift
 
|+Time Scale Shift
 
|-
 
|-
|$\mathbb{T}$ | Shift
+
|$\mathbb{T}$ | Shift $\hat{f}(t,s)$
 
|
 
|
 
|-
 
|-
Line 16: Line 27:
 
|-
 
|-
 
|[[Integers | $\mathbb{Z}$]]
 
|[[Integers | $\mathbb{Z}$]]
|
+
|$\hat{f}(t,s)=f(t-s+t_0)$
 
|-
 
|-
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]

Revision as of 18:42, 8 February 2016

Let $\mathbb{T}$ be a time scale, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following partial dynamic equation for $t,s \in \mathbb{T}$: $$\left\{ \begin{array}{ll} \dfrac{\partial \hat{f}}{\Delta t}(t,\sigma(s))=-\dfrac{\partial \hat{f}}{\Delta s}(t,s)& ; t \geq s \geq t_0, \\ \hat{f}(t,t_0)=f(t)&; t \geq t_0. \end{array} \right.$$ The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).

Properties

Theorem: The following formula holds: $$\displaystyle\int_{t_0}^t \hat{f}(t,\sigma(\xi))\Delta \xi=\displaystyle\int_{t_0}^t f(\xi) \Delta \xi,$$ where $\hat{f}$ denotes the solution of the shifting problem.

Proof:

Examples

Time Scale Shift
Shift $\hat{f}(t,s)$
$\mathbb{R}$ $\hat{f}(t,s)=f(t-s)$
$\mathbb{Z}$ $\hat{f}(t,s)=f(t-s+t_0)$
$h\mathbb{Z}$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

See also

Convolution