Difference between revisions of "Marks-Gravagne-Davis Fourier transform"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]] and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by
 
Let $\mathbb{T}$ be a [[time scale]] and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by
 
$$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$
 
$$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$
where $\ominus$ denotes the [[circle minus]] operation and $\mathring{\iota}$ denotes the [[Hilger pure imaginary]].
+
where $\ominus$ denotes the [[circle minus]] operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the [[delta exponential]], and $\mathring{\iota}$ denotes the [[Hilger pure imaginary]].
  
 
=References=
 
=References=
 
[http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf]
 
[http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf]

Revision as of 20:18, 29 December 2015

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.

References

[1]