Difference between revisions of "Hilger imaginary part"
From timescalewiki
(6 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
− | < | + | [[Range of Hilger imaginary part]]<br /> |
− | < | + | [[Limit of Hilger real and imag parts yields classical]]<br /> |
− | + | [[Hilger real part oplus Hilger imaginary part equals z]]<br /> | |
− | + | ||
− | + | =References= | |
− | < | + | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger real part|next=Hilger pure imaginary}}: Definition 2.3 |
− | </ | + | |
+ | [[Category:Definition]] | ||
+ | |||
+ | <center>{{:Hilger complex plane footer}}</center> |
Latest revision as of 15:40, 21 January 2023
Let $h>0$ and let $z \in \mathbb{C}_h$, the Hilger complex plane. The Hilger imaginary part of $z$ is defined by $$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$ where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).
Properties
Range of Hilger imaginary part
Limit of Hilger real and imag parts yields classical
Hilger real part oplus Hilger imaginary part equals z
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (previous)... (next): Definition 2.3