Difference between revisions of "Hilger circle"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\math...")
 
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$
 
$$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$
 
where $\mathbb{C}_h$ denotes the [[Hilger complex plane]].
 
where $\mathbb{C}_h$ denotes the [[Hilger complex plane]].
 +
 +
=Properties=
 +
 +
=References=
 +
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger alternating axis|next=Hilger real part}}: Definition 2.2
 +
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger alternating axis|next=Cylinder strip}}: Definition $2.2$
 +
 +
[[Category:Definition]]
 +
 +
<center>{{:Hilger complex plane footer}}</center>

Latest revision as of 15:40, 21 January 2023

Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ denotes the Hilger complex plane.

Properties

References

Hilger complex plane and friends

$\Huge\mathbb{A}_h$
Hilger alternating axis
$\Huge\mathbb{I}_h$
Hilger circle
$\Huge\mathbb{C}_h$
Hilger complex plane
$\Huge\mathrm{Im}_h$
Hilger imaginary part
$\Huge\mathring{\iota}$
Hilger pure imaginary
$\Huge\mathbb{R}_h$
Hilger real axis
$\Huge\mathrm{Re}_h$
Hilger real part