Difference between revisions of "Hilger real axis"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $h>0$. We define the Hilger real axis by $$\mathbb{R}_h = \left\{ z \in \mathbb{C}_h \colon z \in \mathbb{R}, z > -\dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ is the H...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Let $h>0$. We define the Hilger real axis by
 
Let $h>0$. We define the Hilger real axis by
$$\mathbb{R}_h = \left\{ z \in \mathbb{C}_h \colon z \in \mathbb{R}, z > -\dfrac{1}{h} \right\},$$
+
$$\mathbb{R}_h = \left\{ z \in \mathbb{R} \colon z > -\dfrac{1}{h} \right\},$$
where $\mathbb{C}_h$ is the [[Hilger complex plane]].
+
and for $h=0$, we let $\mathbb{R}_0=\mathbb{R}$.
 +
 
 +
=Properties=
 +
 
 +
=References=
 +
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger complex plane|next=Hilger alternating axis}}: Definition 2.2
 +
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger complex plane|next=Hilger alternating axis}}: Definition $2.2$
 +
 
 +
[[Category:Definition]]
 +
 
 +
<center>{{:Hilger complex plane footer}}</center>

Latest revision as of 15:40, 21 January 2023

Let $h>0$. We define the Hilger real axis by $$\mathbb{R}_h = \left\{ z \in \mathbb{R} \colon z > -\dfrac{1}{h} \right\},$$ and for $h=0$, we let $\mathbb{R}_0=\mathbb{R}$.

Properties

References

Hilger complex plane and friends

$\Huge\mathbb{A}_h$
Hilger alternating axis
$\Huge\mathbb{I}_h$
Hilger circle
$\Huge\mathbb{C}_h$
Hilger complex plane
$\Huge\mathrm{Im}_h$
Hilger imaginary part
$\Huge\mathring{\iota}$
Hilger pure imaginary
$\Huge\mathbb{R}_h$
Hilger real axis
$\Huge\mathrm{Re}_h$
Hilger real part