Difference between revisions of "Hilger pure imaginary"

From timescalewiki
Jump to: navigation, search
 
(7 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong> If $z \in \mathbb{C}_h$, the [[Hilger complex plane]], then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the [[Hilger circle]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then  
 
<strong>Theorem:</strong> Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then  
Line 11: Line 18:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
[[Hilger real part oplus Hilger imaginary part equals z]]<br />
 +
 +
=References=
 +
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger imaginary part|next=}}: Definition 2.4
 +
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Inverse cylinder transformation|next=}}: $(2.3)$
 +
 +
[[Category:Definition]]
 +
 +
<center>{{:Hilger complex plane footer}}</center>

Latest revision as of 15:40, 21 January 2023

Let $h>0$ be fixed. The Hilger pure imaginary numbers, $\mathring{\iota} \omega$, where $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$ is defined by the formula $$\mathring{\iota} \omega = \dfrac{e^{2\pi i \omega}-1}{h},$$ where $i=\sqrt{-1}$.

Properties

Proposition: If $z \in \mathbb{C}_h$, the Hilger complex plane, then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the Hilger circle.

Proof:

Theorem: Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then $$\left| \mathring{\iota} \omega \right|=\dfrac{4}{h^2} \sin^2 \left( \dfrac{\omega h}{2} \right).$$

Proof:

Hilger real part oplus Hilger imaginary part equals z

References

Hilger complex plane and friends

$\Huge\mathbb{A}_h$
Hilger alternating axis
$\Huge\mathbb{I}_h$
Hilger circle
$\Huge\mathbb{C}_h$
Hilger complex plane
$\Huge\mathrm{Im}_h$
Hilger imaginary part
$\Huge\mathring{\iota}$
Hilger pure imaginary
$\Huge\mathbb{R}_h$
Hilger real axis
$\Huge\mathrm{Re}_h$
Hilger real part