Difference between revisions of "Riccati equation"

From timescalewiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]]. The Riccati equation is the nonlinear [[dynamic equation]] defined by
+
Let $\mathbb{T}$ be a [[time scale]]. The [[self-adjoint]] equation is $(py^{\Delta})^{\Delta}+qy^{\sigma}=0$. The Riccati equation is the nonlinear [[dynamic equation]] defined by
 
$$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$
 
$$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$
 
where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.
 
where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> STATEMENT OF THEOREM
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> proof goes here █
 
</div>
 
</div>
 
  
 
=References=
 
=References=
 
[http://web.mst.edu/~bohner/papers/deotsas.pdf]
 
[http://web.mst.edu/~bohner/papers/deotsas.pdf]

Latest revision as of 06:23, 10 June 2016

Let $\mathbb{T}$ be a time scale. The self-adjoint equation is $(py^{\Delta})^{\Delta}+qy^{\sigma}=0$. The Riccati equation is the nonlinear dynamic equation defined by $$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$ where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.

Properties

References

[1]