Difference between revisions of "Isolated points"
From timescalewiki
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a [[time_scale | time scale]]. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a [[time_scale | time scale]] of isolated points with $t_k > t_n$ iff $k>n$. Define the bijection $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$. | + | Let $\mathbb{T}$ be a [[time_scale | time scale]]. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a [[time_scale | time scale]] of isolated points with $t_k > t_n$ iff $k>n$. Define the [[bijection]] $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$. |
{| class="wikitable" | {| class="wikitable" | ||
Line 32: | Line 32: | ||
|- | |- | ||
|[[Delta integral | $\Delta$-integral]] | |[[Delta integral | $\Delta$-integral]] | ||
− | |$\displaystyle\int_{s}^{t} f(\tau) \Delta \tau=\displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k)$ | + | |$\displaystyle\int_{s}^{t} f(\tau) \Delta \tau= \left\{ \begin{array}{ll} |
+ | -\displaystyle\sum_{k=\pi(t)}^{\pi(s)-1} \mu(t_k)f(t_k) &; t<s, \\ | ||
+ | 0 &; t=s, \\ | ||
+ | \displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k) &; t>s | ||
+ | \end{array}\right.$ | ||
+ | |||
|[[Derivation of delta integral for T=isolated points|derivation]] | |[[Derivation of delta integral for T=isolated points|derivation]] | ||
|- | |- | ||
|[[Nabla integral | $\nabla$-integral]] | |[[Nabla integral | $\nabla$-integral]] | ||
− | |$\displaystyle\int_s^t f(\tau) \nabla \tau=\displaystyle\sum_{k=\pi(\ | + | |$\displaystyle\int_s^t f(\tau) \nabla \tau=\left\{ \begin{array}{ll} |
+ | -\displaystyle\sum_{k=\pi(t)+1}^{\pi(s)} \nu(t_k)f(t_k) &; t<s, \\ | ||
+ | 0&; t=s, \\ | ||
+ | \displaystyle\sum_{k=\pi(s)+1}^{\pi(t)} \nu(t_k)f(t_k) &; t>s | ||
+ | \end{array} \right.$ | ||
|[[Derivation of nabla integral for T=isolated points|derivation]] | |[[Derivation of nabla integral for T=isolated points|derivation]] | ||
|- | |- |
Latest revision as of 23:20, 9 June 2015
Let $\mathbb{T}$ be a time scale. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a time scale of isolated points with $t_k > t_n$ iff $k>n$. Define the bijection $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$.
Generic element $t \in \mathbb{T}$: | for some $n \in \mathbb{Z}$, $t=t_n$ | |
Forward jump: | $\sigma(t_n)=t_{n+1}$ | derivation |
Forward graininess: | $\mu(t_n)=t_{n+1}-t_n$ | derivation |
Backward jump: | $\rho(t_n)=t_{n-1}$ | derivation |
Backward graininess: | $\nu(t_n)=t_{n}-t_{n-1}$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t_n)=\dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t_n)=\dfrac{f(t_n)-f(t_{n-1})}{t_{n}-t_{n-1}}$ | derivation |
$\Delta$-integral | $\displaystyle\int_{s}^{t} f(\tau) \Delta \tau= \left\{ \begin{array}{ll} -\displaystyle\sum_{k=\pi(t)}^{\pi(s)-1} \mu(t_k)f(t_k) &; t<s, \\ 0 &; t=s, \\ \displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k) &; t>s \end{array}\right.$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=\left\{ \begin{array}{ll} -\displaystyle\sum_{k=\pi(t)+1}^{\pi(s)} \nu(t_k)f(t_k) &; t<s, \\ 0&; t=s, \\ \displaystyle\sum_{k=\pi(s)+1}^{\pi(t)} \nu(t_k)f(t_k) &; t>s \end{array} \right.$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{T}_{\mathrm{iso}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\mathbb{T}_{\mathrm{iso}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{T}_{\mathrm{iso}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{T}_{\mathrm{iso}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |