Difference between revisions of "Variance of uniform distribution"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> Let $X$ have the uniform distribu...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>[[Variance of uniform distribution|Proposition]]:</strong> Let $X$ have the [[uniform distribution]] on $[a,b] \cap \mathbb{T}$. Then, | <strong>[[Variance of uniform distribution|Proposition]]:</strong> Let $X$ have the [[uniform distribution]] on $[a,b] \cap \mathbb{T}$. Then, | ||
− | $$\ | + | $$\mathrm{Var}_{\mathbb{T}}(X)=2\dfrac{h_3(\sigma(b),0)-h_3(a,0)}{\sigma(b)-a}-\left( \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a \right)^2.$$ |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Latest revision as of 22:00, 14 April 2015
Proposition: Let $X$ have the uniform distribution on $[a,b] \cap \mathbb{T}$. Then, $$\mathrm{Var}_{\mathbb{T}}(X)=2\dfrac{h_3(\sigma(b),0)-h_3(a,0)}{\sigma(b)-a}-\left( \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a \right)^2.$$
Proof: █