Difference between revisions of "Relationship between delta derivative and nabla derivative"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\mathbb{...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Relationship between delta derivative and nabla derivative|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is [[nabla derivative|$\nabla$-differentiable]] on $\mathbb{T}_{\kappa}$ and $g^{\nabla}$ is [[ld continuous]] on $\mathbb{T}_{\kappa}$, then $f$ is [[delta derivative|$\Delta$-differentiable]] on $\mathbb{T}^{\kappa}$ and  
+
Let $\mathbb{T}$ be a [[time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is [[nabla derivative|$\nabla$-differentiable]] on $\mathbb{T}_{\kappa}$ and $g^{\nabla}$ is [[ld continuous]] on $\mathbb{T}_{\kappa}$, then $f$ is [[delta derivative|$\Delta$-differentiable]] on $\mathbb{T}^{\kappa}$ and  
 
$$g^{\Delta}(t) = g^{\nabla}(\sigma(t)).$$
 
$$g^{\Delta}(t) = g^{\nabla}(\sigma(t)).$$
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 00:31, 23 August 2016

Theorem

Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is $\nabla$-differentiable on $\mathbb{T}_{\kappa}$ and $g^{\nabla}$ is ld continuous on $\mathbb{T}_{\kappa}$, then $f$ is $\Delta$-differentiable on $\mathbb{T}^{\kappa}$ and $$g^{\Delta}(t) = g^{\nabla}(\sigma(t)).$$

Proof

References