Difference between revisions of "Delta Markov inequality"
From timescalewiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then | + | __NOTOC__ |
+ | ==Theorem== | ||
+ | Let $\mathbb{T}$ be a [[time scale]] with $a \in \mathbb{T}$. Then | ||
$$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$ | $$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$ | ||
where $X$ is a [[random variable]], $P$ denotes probability, and $\mathbb{E}_{\mathbb{T}}$ denotes [[expected value]]. | where $X$ is a [[random variable]], $P$ denotes probability, and $\mathbb{E}_{\mathbb{T}}$ denotes [[expected value]]. | ||
+ | |||
+ | ==Proof== | ||
+ | |||
+ | ==References== | ||
{{:Delta inequalities footer}} | {{:Delta inequalities footer}} | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 00:37, 15 September 2016
Theorem
Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then $$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$ where $X$ is a random variable, $P$ denotes probability, and $\mathbb{E}_{\mathbb{T}}$ denotes expected value.
Proof
References
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |