Difference between revisions of "Diamond alpha Hölder inequality"

From timescalewiki
Jump to: navigation, search
 
Line 1: Line 1:
a
+
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> Let $\mathbb{T}$ be a [[time scale]] with $a,b \in \mathbb{T}$, $a<b$,and $f,g \colon [a,b]\cap\mathbb{T} \rightarrow [0,\infty)$. Also assume that
 +
$$\displaystyle\int_a^b h(x)g^q(x)\Diamond_{\alpha} x >0,$$
 +
where $q$ obeys $\dfrac{1}{p}+\dfrac{1}{q}=1$ with $p>1$. Then,
 +
$$\displaystyle\int_a^b h(x)f(x)g(x) \Diamond_{\alpha} x \leq \left( \displaystyle\int_a^b h(x) f^p(x) \Diamond_{\alpha} x \right)^{\frac{1}{p}} \left( \displaystyle\int_a^b h(x)g^q(x) \Diamond_{\alpha} x \right)^{\frac{1}{q}}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
=References=
 +
[http://arxiv.org/pdf/0712.1680.pdf]

Latest revision as of 12:36, 28 March 2015

Theorem: Let $\mathbb{T}$ be a time scale with $a,b \in \mathbb{T}$, $a<b$,and $f,g \colon [a,b]\cap\mathbb{T} \rightarrow [0,\infty)$. Also assume that $$\displaystyle\int_a^b h(x)g^q(x)\Diamond_{\alpha} x >0,$$ where $q$ obeys $\dfrac{1}{p}+\dfrac{1}{q}=1$ with $p>1$. Then, $$\displaystyle\int_a^b h(x)f(x)g(x) \Diamond_{\alpha} x \leq \left( \displaystyle\int_a^b h(x) f^p(x) \Diamond_{\alpha} x \right)^{\frac{1}{p}} \left( \displaystyle\int_a^b h(x)g^q(x) \Diamond_{\alpha} x \right)^{\frac{1}{q}}.$$

Proof:

References

[1]