Difference between revisions of "Delta gk"
From timescalewiki
(Created page with "==$g_k$ polynomials== $$g_0(t,s)=1$$ $$g_{n}(t,s) = \displaystyle\int_s^t g_{n-1}(\sigma(\tau),s) \Delta \tau$$ {| class="wikitable" |+Time Scale $g_k$ Monomials |- |$\mathbb...") |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | Let $\mathbb{T}$ be a [[time scale]] and let $t,s \in \mathbb{T}$. The $g_k$ monomials are defined by the recurrence | |
− | $$g_0(t,s)=1 | + | $$\left\{ \begin{array}{ll} |
− | + | g_0(t,s)=1 \\ | |
+ | g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. | ||
+ | \end{array} \right.$$ | ||
− | + | <div align="center"> | |
− | + | <gallery> | |
− | + | File:Integergk,k=2,s=0plot.png|Graph of $g_2(t,0;\mathbb{Z})$. | |
− | |$\mathbb{ | + | File:Integergk,k=3,s=0plot.png|Graph of $g_3(t,0;\mathbb{Z})$. |
− | |$ | + | File:Integergk,k=4,s=0plot.png|Graph of $g_4(t,0;\mathbb{Z})$. |
− | + | File:Integergk,k=5,s=0plot.png|Graph of $g_5(t,0;\mathbb{Z})$. | |
− | + | </gallery> | |
− | |$ | + | </div> |
− | + | ||
− | + | ||
− | |$ | + | |
− | + | =Properties= | |
− | + | [[Zeros of delta gk]]<br /> | |
− | + | [[Relationship between delta hk and delta gk]]<br /> | |
− | + | ||
− | + | =Examples= | |
− | + | {{:Table:Delta gk}} | |
− | + | ||
− | + | =See also= | |
− | + | [[Delta hk]] | |
− | + | ||
− | + | <center>{{:Delta special functions footer}}</center> | |
− | + | ||
− | + | [[Category:specialfunction]] | |
− | + | [[Category:Definition]] | |
− | |||
− |
Latest revision as of 14:13, 28 January 2023
Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $g_k$ monomials are defined by the recurrence $$\left\{ \begin{array}{ll} g_0(t,s)=1 \\ g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. \end{array} \right.$$
Properties
Zeros of delta gk
Relationship between delta hk and delta gk
Examples
$\mathbb{T}=$ | $g_k(t,t_0)=$ |
$\mathbb{R}$ | $g_k(t,t_0)=\dfrac{(t-t_0)^k}{k!}$ |
$\mathbb{Z}$ | $g_k(t,t_0)= $ |
$h\mathbb{Z}$ | $g_k(t,t_0)=$ |
$\mathbb{Z}^2$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $g_k(t,t_0)=$ |
$\mathbb{H}$ | $g_k(t,t_0)=$ |
See also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |