Difference between revisions of "Delta cosh minus delta sinh"
From timescalewiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ | $$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ | ||
where $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]] function, $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function, and $e_p$ denotes the [[Delta exponential|$\Delta$-$e_p$]] function. | where $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]] function, $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function, and $e_p$ denotes the [[Delta exponential|$\Delta$-$e_p$]] function. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 21:30, 9 June 2016
Theorem
The following formula holds: $$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function, $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function, and $e_p$ denotes the $\Delta$-$e_p$ function.