Difference between revisions of "Delta cosh minus delta sinh"

From timescalewiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Delta cosh minus delta sinh|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$
 
$$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$
 
where $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]] function, $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function, and $e_p$ denotes the [[Delta exponential|$\Delta$-$e_p$]] function.
 
where $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]] function, $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function, and $e_p$ denotes the [[Delta exponential|$\Delta$-$e_p$]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 21:30, 9 June 2016

Theorem

The following formula holds: $$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function, $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function, and $e_p$ denotes the $\Delta$-$e_p$ function.

Proof

References