Difference between revisions of "Forward regressive"

From timescalewiki
Jump to: navigation, search
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$. We say that $p$ is ''regressive'' if for all $t \in \mathbb{T}^{\kappa}$  
+
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$  
 
$$1+\mu(t)p(t)\neq 0.$$
 
$$1+\mu(t)p(t)\neq 0.$$
We let $\mathcal{R}(X,Y)$ denote the set of regressive functions $p \colon X \rightarrow Y$. Let $p,q \in \mathcal{R}$ and define the "circle plus" operation $\oplus \colon \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ by the formula, for $t \in \mathbb{T}^{\kappa}$,
 
$$(p \oplus q)(t) = p(t)+q(t)+\mu(t)p(t)q(t).$$
 
We define the inverse operation of $\oplus$ by the formula
 
$(\ominus p)(t) = -\dfrac{p(t)}{1+\mu(t)p(t)}$.
 
The ordered pair $(\mathcal{R},\oplus)$ is an [[Abelian_group | Abelian group]] with subtraction $(p \ominus q)(t) = (p \oplus (\ominus q))(t) = \dfrac{p(t)-q(t)}{1+\mu(t)q(t)}$.
 
  
==Related definitions==
+
=See also=
The set of positively regressive functions is
+
 
$$\mathcal{R}^+(\mathbb{T},X)=\{p \in \mathcal{R} \colon \forall t \in \mathbb{T}, 1+\mu(t)p(t)>0 \}.$$
+
=References=
The set of negatively regressive functions is
+
 
$$\mathcal{R}^-(\mathbb{T},X)=\{p \in \mathcal{R} \colon \forall t \in \mathbb{T}, 1+\mu(t)p(t)<0 \}.$$
+
[[Category:Definition]]

Latest revision as of 12:58, 16 January 2023

Let $\mathbb{T}$ be a time scale. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ $$1+\mu(t)p(t)\neq 0.$$

See also

References