Difference between revisions of "Nabla cosh"
From timescalewiki
(Created page with "$$\hat{\cosh}_p(t,s)=\dfrac{\hat{e}_p(t,s)+\hat{e}_{-p}(t,s)}{2}$$ =Properties= <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</str...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | $$\ | + | $$\widehat{\cosh}_p(t,s)=\dfrac{\widehat{e}_p(t,s)+\widehat{e}_{-p}(t,s)}{2}$$ |
=Properties= | =Properties= | ||
− | + | [[Dynamic equation for nabla cosh and nabla sinh]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
− | #$\ | + | #$\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function. |
− | #$\ | + | #$\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\widehat{e}_{\nu p^2}(t,s)$ |
− | #$\hat{\cosh}_p(t,s)-\ | + | #$\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$ |
+ | #$\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$ | ||
=References= | =References= | ||
[http://faculty.cord.edu/andersod/p20.pdf Nabla dynamic equations] | [http://faculty.cord.edu/andersod/p20.pdf Nabla dynamic equations] | ||
+ | |||
+ | {{:Nabla special functions footer}} |
Latest revision as of 23:38, 11 December 2016
$$\widehat{\cosh}_p(t,s)=\dfrac{\widehat{e}_p(t,s)+\widehat{e}_{-p}(t,s)}{2}$$
Properties
Dynamic equation for nabla cosh and nabla sinh
- $\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the $\nabla$-$\sinh$ function.
- $\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\widehat{e}_{\nu p^2}(t,s)$
- $\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
- $\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$