Difference between revisions of "Delta Taylor's formula"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $n \in \{1,2,\ldots\}$. Suppose ...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a [[time scale]]. | + | ==Theorem== |
+ | Let $\mathbb{T}$ be a [[time scale]] and $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then | ||
+ | $$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ | ||
+ | where $h_k$ denotes the [[Delta hk|$h_k$ Taylor monomials]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
− | + | ||
− | + | [[Category:Theorem]] | |
− | + | [[Category:Unproven]] | |
− |
Latest revision as of 17:05, 15 January 2023
Theorem
Let $\mathbb{T}$ be a time scale and $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then $$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ where $h_k$ denotes the $h_k$ Taylor monomials.