Difference between revisions of "Euler-Cauchy logarithm"
From timescalewiki
(4 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
=References= | =References= | ||
*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$ | *{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$ | ||
− | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm composed with forward jump|next=findme}} | + | *{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm composed with forward jump|next=findme}} |
− | |||
− | |||
− |
Latest revision as of 15:15, 21 January 2023
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. The Euler-Cauchy logarithm is defined by the formula $$L(t,s)=\displaystyle\int_{s}^t \dfrac{1}{\tau + 2\mu(\tau)} \Delta \tau.$$
Properties
See also
Euler-Cauchy dynamic equation
Jackson logarithm
Mozyrska-Torres logarithm