Difference between revisions of "Shifting problem"
From timescalewiki
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
Let $\mathbb{T}$ be a time scale with $\sup \mathbb{T}=\infty$, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following [[partial dynamic equation]] for $t,s \in \mathbb{T}$: | Let $\mathbb{T}$ be a time scale with $\sup \mathbb{T}=\infty$, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following [[partial dynamic equation]] for $t,s \in \mathbb{T}$: | ||
$$\left\{ \begin{array}{ll} | $$\left\{ \begin{array}{ll} | ||
Line 40: | Line 41: | ||
|} | |} | ||
</center> | </center> | ||
+ | |||
+ | =See also= | ||
+ | [[Unilateral convolution]] <br /> | ||
+ | [[Unilateral Laplace transform]]<br /> | ||
=References= | =References= | ||
*{{PaperReference|The convolution on time scales|2007|Martin Bohner|author2=Gusein Sh. Guseinov|prev=|next=}}: Definition 2.1 | *{{PaperReference|The convolution on time scales|2007|Martin Bohner|author2=Gusein Sh. Guseinov|prev=|next=}}: Definition 2.1 | ||
− | |||
− | |||
− |
Latest revision as of 14:51, 21 January 2023
Let $\mathbb{T}$ be a time scale with $\sup \mathbb{T}=\infty$, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following partial dynamic equation for $t,s \in \mathbb{T}$: $$\left\{ \begin{array}{ll} \dfrac{\partial \hat{f}}{\Delta t}(t,\sigma(s))=-\dfrac{\partial \hat{f}}{\Delta s}(t,s)& ; t \geq s \geq t_0, \\ \hat{f}(t,t_0)=f(t)&; t \geq t_0. \end{array} \right.$$ The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).
Properties
Delta integral of certain shift of f is delta integral of f
Delta partial derivative of shift along diagonal
Examples
$\mathbb{T}$ | $\hat{f}(t,s)=$ |
$\mathbb{R}$ | $f(t-s)$ |
$\mathbb{Z}$ | $f(t-s+t_0)$ |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
See also
Unilateral convolution
Unilateral Laplace transform
References
- Martin Bohner and Gusein Sh. Guseinov: The convolution on time scales (2007): Definition 2.1