Difference between revisions of "Bilateral Laplace transform"
From timescalewiki
(→See also) |
|||
Line 4: | Line 4: | ||
=See also= | =See also= | ||
− | [[Laplace transform]]<br /> | + | [[Unilateral Laplace transform]]<br /> |
[[Cuchta-Georgiev Fourier transform]]<br /> | [[Cuchta-Georgiev Fourier transform]]<br /> | ||
Latest revision as of 15:12, 21 January 2023
Let $\mathbb{T}$ be a time scale. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by $$\mathscr{L}_{\mathbb{T}}^b(z;s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t,$$ where $e_{\ominus z}$ denotes the delta exponential and $\ominus z$ denotes forward circle minus.
See also
Unilateral Laplace transform
Cuchta-Georgiev Fourier transform
References
- John M. Davis, Ian A. Gravagne and Robert J. Marks II: Bilateral Laplace Transforms on Time Scales: Convergence, Convolution, and the Characterization of Stationary Stochastic Time Series (2009)... (previous)... (next): $(3.1)$
- Tom Cuchta and Svetlin Georgiev: Analysis of the bilateral Laplace transform on time scales with applications (2021): Section 1