Difference between revisions of "Time scale"
(28 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | A | + | A time scale is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Sometimes we deal with the set $\mathbb{T}^{\kappa} = \mathbb{T} \setminus \left\{ \sup \mathbb{T} \right\}$ (if $\sup \mathbb{T}=\infty$ then $\mathbb{T}^{\kappa}=\mathbb{T}$). For some set $X$, let $f \colon \mathbb{T} \rightarrow X$. The following is a common notation using the [[forward jump]] operator: $f^{\sigma} \colon \mathbb{T}^{\kappa} \rightarrow X$ is given by the formula $f^{\sigma}(t)=f(\sigma(t))$. Similarly the [[backward jump]] is used to define the function $f^{\rho}$. |
− | |||
− | |||
− | |||
− | |||
− | + | To every time scale we have "standard" calculus operators: the [[delta_derivative | $\Delta$-derivative]] and [[delta_integration | $\Delta$-integral]], however there are also different types of other derivatives and integrals such as the [[nabla derivative | $\nabla$-derivative]] and the [[nabla integral | $\nabla$-integral]]. | |
− | |||
− | To every time scale we have | ||
− | = The set of time scales = | + | =The set of time scales= |
− | Let $\mathcal{H} = \{\mathbb{T} \subset \mathbb{R} \colon \mathbb{T}$ is a closed set $\}$. A set like this can be given a standard topological structure making it the [http:// | + | Let $\mathcal{H} = \{\mathbb{T} \subset \mathbb{R} \colon \mathbb{T}$ is a closed set $\}$. A set like this can be given a standard topological structure making it the [http://hyperspacewiki.org/index.php/Hyperspace hyperspace] $\mathcal{H}=\mathrm{CL}(\mathbb{R})$. We can characterize time scales using the [http://en.wikipedia.org/wiki/Derived_set_%28mathematics%29 Cantor-Bendixson derivative] -- a time scale $\mathbb{T}$ is the union of a [https://proofwiki.org/wiki/Definition:Perfect_Set perfect set] and a countable set. |
− | = Examples of time scales = | + | =Examples of time scales= |
# The real line: [[Real_numbers | $\mathbb{R}$]] | # The real line: [[Real_numbers | $\mathbb{R}$]] | ||
# The integers: [[Integers | $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$]] | # The integers: [[Integers | $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$]] | ||
# Multiples of integers: [[Multiples_of_integers | $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$]] | # Multiples of integers: [[Multiples_of_integers | $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$]] | ||
− | # Quantum numbers ($q>1$): [[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}} | + | # Quantum numbers ($q>1$): [[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}$]] |
− | # Quantum numbers ($q<1$): [[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}} | + | # Quantum numbers ($q<1$): [[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}$]] |
# Square integers: [[Square_integers | $\mathbb{Z}^2 = \{t^2 \colon t \in \mathbb{Z} \}$]] | # Square integers: [[Square_integers | $\mathbb{Z}^2 = \{t^2 \colon t \in \mathbb{Z} \}$]] | ||
# Harmonic numbers: [[Harmonic_numbers | $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$]] | # Harmonic numbers: [[Harmonic_numbers | $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$]] | ||
# The closure of the unit fractions: [[Closure_of_unit_fractions | $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$]] | # The closure of the unit fractions: [[Closure_of_unit_fractions | $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$]] | ||
# Isolated points: [[Isolated_points | $\mathbb{T}=\{\ldots, t_{-1}, t_{0}, t_1, \ldots\}$]] | # Isolated points: [[Isolated_points | $\mathbb{T}=\{\ldots, t_{-1}, t_{0}, t_1, \ldots\}$]] | ||
+ | |||
+ | =Applications of time scales= | ||
+ | #Control theory, see [http://www.kirj.ee/public/Phys_Math/2007/issue_3/phys-2007-3-3.pdf this] and [http://arxiv.org/pdf/0805.0274.pdf this] and [http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac11-proceedings/data/html/papers/1815.pdf this] | ||
+ | #Economics, see [http://web.mst.edu/~BOHNER/tss-10/aaotste.pdf this] and [http://www.janlibich.com/LibichStehlik_scales2.pdf this] | ||
+ | #Ecology, see [http://www.ecologyandsociety.org/vol14/iss2/art21/ this] | ||
+ | #Possible application to geophysics [http://meetingorganizer.copernicus.org/EGU2013/EGU2013-4225.pdf here] | ||
+ | #Biological systems [http://www.advancesindifferenceequations.com/content/pdf/s13662-015-0383-0.pdf here] | ||
+ | #Population model for flies [http://campus.mst.edu/ijde/contents/v8n2p1.pdf here] | ||
+ | #[http://www.sciencedirect.com/science/article/pii/S089396591100468X this] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|next=Forward jump}}: Theorem 1.16 (i) | ||
+ | * {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=|next=Real numbers}}: Appendix | ||
+ | * {{PaperReference|Square Integrability of Gaussian Bells on Time Scales|2008|Lynn Erbe|author2=Allan Peterson|author3=Moritz Simon|prev=findme|next=findme}}: Definition $2.30$ | ||
+ | * {{PaperReference|Functional series on time scales|2008|Dorota Mozyrska|author2=Ewa Pawluszewicz|next=Forward jump}} |
Latest revision as of 14:47, 15 January 2023
A time scale is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Sometimes we deal with the set $\mathbb{T}^{\kappa} = \mathbb{T} \setminus \left\{ \sup \mathbb{T} \right\}$ (if $\sup \mathbb{T}=\infty$ then $\mathbb{T}^{\kappa}=\mathbb{T}$). For some set $X$, let $f \colon \mathbb{T} \rightarrow X$. The following is a common notation using the forward jump operator: $f^{\sigma} \colon \mathbb{T}^{\kappa} \rightarrow X$ is given by the formula $f^{\sigma}(t)=f(\sigma(t))$. Similarly the backward jump is used to define the function $f^{\rho}$.
To every time scale we have "standard" calculus operators: the $\Delta$-derivative and $\Delta$-integral, however there are also different types of other derivatives and integrals such as the $\nabla$-derivative and the $\nabla$-integral.
Contents
The set of time scales
Let $\mathcal{H} = \{\mathbb{T} \subset \mathbb{R} \colon \mathbb{T}$ is a closed set $\}$. A set like this can be given a standard topological structure making it the hyperspace $\mathcal{H}=\mathrm{CL}(\mathbb{R})$. We can characterize time scales using the Cantor-Bendixson derivative -- a time scale $\mathbb{T}$ is the union of a perfect set and a countable set.
Examples of time scales
- The real line: $\mathbb{R}$
- The integers: $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
- Multiples of integers: $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$
- Quantum numbers ($q>1$): $\overline{q^{\mathbb{Z}}}$
- Quantum numbers ($q<1$): $\overline{q^{\mathbb{Z}}}$
- Square integers: $\mathbb{Z}^2 = \{t^2 \colon t \in \mathbb{Z} \}$
- Harmonic numbers: $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$
- The closure of the unit fractions: $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
- Isolated points: $\mathbb{T}=\{\ldots, t_{-1}, t_{0}, t_1, \ldots\}$
Applications of time scales
- Control theory, see this and this and this
- Economics, see this and this
- Ecology, see this
- Possible application to geophysics here
- Biological systems here
- Population model for flies here
- this
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (next): Theorem 1.16 (i)
- Billy Jackson: Partial dynamic equations on time scales (2006)... (next): Appendix
- Lynn Erbe, Allan Peterson and Moritz Simon: Square Integrability of Gaussian Bells on Time Scales (2008)... (previous)... (next): Definition $2.30$
- Dorota Mozyrska and Ewa Pawluszewicz: Functional series on time scales (2008)... (next)