Difference between revisions of "Mozyrska-Torres logarithm composed with forward jump"
From timescalewiki
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. Then, $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-To...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | + | If $\mathbb{T}$ be a [[time scale]], then, | |
$$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ | $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ | ||
where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]], $\sigma$ denotes the [[forward jump]], and $\mu$ denotes the [[forward graininess]]. | where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]], $\sigma$ denotes the [[forward jump]], and $\mu$ denotes the [[forward graininess]]. | ||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev= | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is positive on (1,infinity)|next=Euler-Cauchy logarithm}} |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 15:13, 21 January 2023
Theorem
If $\mathbb{T}$ be a time scale, then, $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm, $\sigma$ denotes the forward jump, and $\mu$ denotes the forward graininess.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)