Difference between revisions of "Mozyraska-Torres logarithm is negative on (0,1)"

From timescalewiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathbb{T}$ be a [[time scale]]. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$.  
+
Let $\mathbb{T}$ be a [[time scale]]. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$, where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]].  
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
{{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyrska-Torres logarithm is positive on (1,infinity)}}
+
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyrska-Torres logarithm is positive on (1,infinity)}}
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 15:13, 21 January 2023

Theorem

Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$, where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)