Difference between revisions of "Mozyraska-Torres logarithm is negative on (0,1)"
From timescalewiki
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$. ==Proof== ==References== {{PaperReference|The Natural Loga...") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | Let $\mathbb{T}$ be a [[time scale]]. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$. | + | Let $\mathbb{T}$ be a [[time scale]]. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$, where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]]. |
==Proof== | ==Proof== | ||
==References== | ==References== | ||
− | {{PaperReference|The Natural Logarithm on Time Scales| | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyrska-Torres logarithm is positive on (1,infinity)}} |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 15:13, 21 January 2023
Theorem
Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$, where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)