Difference between revisions of "Mozyrska-Torres logarithm is increasing"
From timescalewiki
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. For all $t \in \mathbb{T}^{\kappa} \cap (0,\infty)$, $t \mapsto L_{\mathbb{T}}(t)$ is an increasing function. ==Proof==...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 5: | Line 5: | ||
==References== | ==References== | ||
− | {{PaperReference|The Natural Logarithm on Time Scales| | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm on the reals|next=Mozyraska-Torres logarithm is negative on (0,1)}} |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 15:13, 21 January 2023
Theorem
Let $\mathbb{T}$ be a time scale. For all $t \in \mathbb{T}^{\kappa} \cap (0,\infty)$, $t \mapsto L_{\mathbb{T}}(t)$ is an increasing function.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)