Difference between revisions of "Hilger complex plane"
From timescalewiki
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Let $h>0$ be fixed. We define the Hilger complex plane to be | Let $h>0$ be fixed. We define the Hilger complex plane to be | ||
− | $$\mathbb{C}_h = \left\{ z \in \mathbb{C} \colon z \neq \dfrac{1}{h} \right\} | + | $$\mathbb{C}_h = \left\{ z \in \mathbb{C} \colon z \neq -\dfrac{1}{h} \right\},$$ |
+ | and for $h=0$, we let $\mathbb{C}_0=\mathbb{C}$. | ||
=Properties= | =Properties= | ||
=References= | =References= | ||
+ | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=|next=Hilger real axis}}: Definition 2.2 | ||
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Causal time scale|next=Hilger real axis}}: Definition $2.2$ | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Causal time scale|next=Hilger real axis}}: Definition $2.2$ | ||
+ | |||
+ | [[Category:Definition]] | ||
+ | |||
+ | <center>{{:Hilger complex plane footer}}</center> |
Latest revision as of 12:45, 6 June 2023
Let $h>0$ be fixed. We define the Hilger complex plane to be $$\mathbb{C}_h = \left\{ z \in \mathbb{C} \colon z \neq -\dfrac{1}{h} \right\},$$ and for $h=0$, we let $\mathbb{C}_0=\mathbb{C}$.
Properties
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (next): Definition 2.2
- Robert J. Marks II, Ian A. Gravagne and John M. Davis: A generalized Fourier transform and convolution on time scales (2008)... (previous)... (next): Definition $2.2$