Difference between revisions of "Semigroup property of delta exponential"

From timescalewiki
Jump to: navigation, search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}\left( \mathbb{T},\mathbb{C} \right)$ be a [[regressive function]]. The following formula holds:
+
Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}\left( \mathbb{T},\mathbb{C} \right)$ be a [[forward regressive function]]. The following formula holds for all $s,t \in \mathbb{T}$:
 
$$e_p(t,r;\mathbb{T})e_p(r,s;\mathbb{T})=e_p(t,s;\mathbb{T}),$$
 
$$e_p(t,r;\mathbb{T})e_p(r,s;\mathbb{T})=e_p(t,s;\mathbb{T}),$$
 
where $e_p$ denotes the [[delta exponential]].
 
where $e_p$ denotes the [[delta exponential]].
Line 7: Line 7:
  
 
==References==
 
==References==
 +
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta exponential|next=Delta exponential dynamic equation}}: Lemma $2.31$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:21, 8 February 2017

Theorem

Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}\left( \mathbb{T},\mathbb{C} \right)$ be a forward regressive function. The following formula holds for all $s,t \in \mathbb{T}$: $$e_p(t,r;\mathbb{T})e_p(r,s;\mathbb{T})=e_p(t,s;\mathbb{T}),$$ where $e_p$ denotes the delta exponential.

Proof

References