|
|
(24 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | Let $\mathbb{T}$ be a [[time scale]]. Define $\xi_h(z) := \dfrac{1}{h} \log(1+zh)$. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be a [[regressive_function | regressive function]]. The exponential function $e_p \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ is defined as
| + | The classical exponential function $e^{x-s}$ is the unique solution to the initial value problem |
| + | $$y'=y; y(s)=1.$$ |
| + | The standard way to generalize this to time scales is called the [[Delta exponential | $\Delta$-exponential]] function, which is the solution of |
| + | $$y^{\Delta}=y;y(s)=1.$$ |
| + | It generalizes the above equation in the sense that the classical derivative is replaced by the [[Delta derivative | $\Delta$-derivative]] on some time scale. If instead of using the $\Delta$-derivative one uses the [[nabla derivative | $\nabla$-derivative]] then the resulting exponential equation is |
| + | $$y^{\nabla}=y;y(s)=1,$$ |
| + | defining the [[nabla exponential | $\nabla$-exponential]] functions. |
| | | |
− | $$e_p(t,s) := \exp \left( \displaystyle\int_s^t \xi_{\mu(\tau)}(p(\tau))\Delta \tau \right)$$
| + | Generally speaking, given some kind of time scale derivative operator $D$, we can define exponential functions by the $D$-dynamic equation |
− | | + | $$Dy=y; y(s)=1.$$ |
− | for $s,t \in \mathbb{T}$. It turns out that $e_p$ is the unique solution to the dynamic initial value problem
| |
− | $$y^{\Delta} = py; y(s)=1.$$ | |
− | | |
− | | |
− | == Properties of Exponential Functions ==
| |
− | For all $p,q \in \mathcal{R}$ and $t,s \in \mathbb{T}$,
| |
− | *$e_p(t,r)e_p(r,s)=e_p(t,s)$ (semigroup property)
| |
− | *$e_0(t,s)=1, e_p(t,t)=1$
| |
− | *$e_p(\sigma(t),s)=(1+\mu(t)p(t))e_p(t,s)$
| |
− | *$\dfrac{1}{e_p(t,s)}=e_{\ominus p}(t,s)$
| |
− | *$e_p(t,s)e_q(t,s)=e_{p \oplus q}(t,s)$
| |
− | *$\dfrac{e_p(t,s)}{e_q(t,s)} = e_{p \ominus q}(t,s)$
| |
− | *$\left( \dfrac{1}{e_p(\cdot,s)} \right)^{\Delta} = -\dfrac{p(t)}{e_p^{\sigma}(\cdot,s)}$
| |
− | | |
− | == Examples of Exponential Functions ==
| |
− | {| class="wikitable"
| |
− | |+Time Scale Exponential Functions
| |
− | |-
| |
− | |$\mathbb{T}=$
| |
− | |$e_p(t,s)=$
| |
− | |-
| |
− | |[[Real_numbers | $\mathbb{R}$]]
| |
− | |$e_p(t,s)= \left\{ \begin{array}{ll}
| |
− | \exp \left( \displaystyle\int_s^t p(\tau) d \tau \right) &; t>s \\
| |
− | 1 &; t=s \\
| |
− | \exp \left( -\displaystyle\int_t^s p(\tau) d\tau \right) &; t<s
| |
− | \end{array} \right.$
| |
− | |-
| |
− | |[[Integers | $\mathbb{Z}$]]
| |
− | |$e_p(t,s) = \left\{ \begin{array}{ll}
| |
− | \displaystyle\prod_{k=s}^{t-1} 1+p(k) &; t > s \\
| |
− | 1 &; t=s \\
| |
− | \displaystyle\prod_{k=t}^{s-1} \dfrac{1}{1+p(k)}&; t < s
| |
− | \end{array} \right.$
| |
− | |-
| |
− | |[[Multiples_of_integers | $h\mathbb{Z}$]]
| |
− | | $ e_p(t,s) = \left\{ \begin{array}{ll}
| |
− | \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} (1+hp(hk)) &; t > s \\
| |
− | 1 &; t=s \\
| |
− | \displaystyle\prod_{k=\frac{t}{h}}^{\frac{s}{h}-1} \dfrac{1}{1+hp(hk)} &; t < s
| |
− | \end{array} \right.$
| |
− | |-
| |
− | | [[Square_integers | $\mathbb{Z}^2$]]
| |
− | | $ e_p(t,s) = \left\{\begin{array}{ll}
| |
− | \displaystyle\prod_{k=\sqrt{s}}^{\sqrt{t}-1} 1 + p(k^2)(2k+1) &; t > s \\
| |
− | 1 &; t=s\\
| |
− | \displaystyle\prod_{k=\sqrt{t}}^{\sqrt{s}-1} \dfrac{1}{1+p(k^2)(2k+1)} &; t < s
| |
− | \end{array} \right.$
| |
− | |-
| |
− | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]]
| |
− | | $e_p(t,s) = \left\{ \begin{array}{ll}
| |
− | \displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^k(q-1) &; t > s \\
| |
− | 1 &; t=s \\
| |
− | \displaystyle\prod_{k=\log_q(t)}^{\log_q(s)-1} \dfrac{1}{1+p(q^k)q^k(q-1)} &; t < s
| |
− | \end{array} \right.$
| |
− | |-
| |
− | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]]
| |
− | | other stuff
| |
− | |-
| |
− | |[[Harmonic_numbers | $\mathbb{H}$]]
| |
− | |$ e_p(t,s) = e_p\left( \displaystyle\sum_{k=1}^n \dfrac{1}{k}, \displaystyle\sum_{k=1}^m \dfrac{1}{k} \right) = \left\{\begin{array}{ll}
| |
− | \displaystyle\prod_{k=m}^{n-1} 1 + \dfrac{1}{k+1} p \left( \displaystyle\sum_{j=1}^k \dfrac{1}{j} \right) &; t > s \\
| |
− | 1 &; t=s \\
| |
− | \displaystyle\prod_{k=n}^{m-1} 1 + \dfrac{1}{k+1} p \left( \displaystyle\sum_{j=1}^k \dfrac{1}{j} \right) &; t < s
| |
− | \end{array} \right.$
| |
− | |}
| |
The classical exponential function $e^{x-s}$ is the unique solution to the initial value problem
$$y'=y; y(s)=1.$$
The standard way to generalize this to time scales is called the $\Delta$-exponential function, which is the solution of
$$y^{\Delta}=y;y(s)=1.$$
It generalizes the above equation in the sense that the classical derivative is replaced by the $\Delta$-derivative on some time scale. If instead of using the $\Delta$-derivative one uses the $\nabla$-derivative then the resulting exponential equation is
$$y^{\nabla}=y;y(s)=1,$$
defining the $\nabla$-exponential functions.
Generally speaking, given some kind of time scale derivative operator $D$, we can define exponential functions by the $D$-dynamic equation
$$Dy=y; y(s)=1.$$