Difference between revisions of "Derivative of alternative delta cosine"
From timescalewiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | Let $\mathbb{T}$ be a [[time scale]]. The following formula holds: | |
$$\mathrm{c}_{pq}^{\Delta}(t,s;\mathbb{T})=p(t)\mathrm{c}_{pq}(t,s;\mathbb{T})-q(t)\mathrm{s}_{pq}(t,s;\mathbb{T}),$$ | $$\mathrm{c}_{pq}^{\Delta}(t,s;\mathbb{T})=p(t)\mathrm{c}_{pq}(t,s;\mathbb{T})-q(t)\mathrm{s}_{pq}(t,s;\mathbb{T}),$$ | ||
where $\mathrm{c}_{pq}$ denotes the [[delta cpq|alternative delta cosine]] and $\mathrm{s}_{pq}$ denotes the [[delta spq|alternative delta sine]]. | where $\mathrm{c}_{pq}$ denotes the [[delta cpq|alternative delta cosine]] and $\mathrm{s}_{pq}$ denotes the [[delta spq|alternative delta sine]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 00:41, 15 September 2016
Theorem
Let $\mathbb{T}$ be a time scale. The following formula holds: $$\mathrm{c}_{pq}^{\Delta}(t,s;\mathbb{T})=p(t)\mathrm{c}_{pq}(t,s;\mathbb{T})-q(t)\mathrm{s}_{pq}(t,s;\mathbb{T}),$$ where $\mathrm{c}_{pq}$ denotes the alternative delta cosine and $\mathrm{s}_{pq}$ denotes the alternative delta sine.