Difference between revisions of "Delta gk"
From timescalewiki
(8 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. | g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. | ||
\end{array} \right.$$ | \end{array} \right.$$ | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Integergk,k=2,s=0plot.png|Graph of $g_2(t,0;\mathbb{Z})$. | ||
+ | File:Integergk,k=3,s=0plot.png|Graph of $g_3(t,0;\mathbb{Z})$. | ||
+ | File:Integergk,k=4,s=0plot.png|Graph of $g_4(t,0;\mathbb{Z})$. | ||
+ | File:Integergk,k=5,s=0plot.png|Graph of $g_5(t,0;\mathbb{Z})$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | |||
=Properties= | =Properties= | ||
− | + | [[Zeros of delta gk]]<br /> | |
+ | [[Relationship between delta hk and delta gk]]<br /> | ||
=Examples= | =Examples= | ||
Line 14: | Line 26: | ||
[[Delta hk]] | [[Delta hk]] | ||
− | {{:Delta special functions footer}} | + | <center>{{:Delta special functions footer}}</center> |
+ | |||
+ | [[Category:specialfunction]] | ||
+ | [[Category:Definition]] |
Latest revision as of 14:13, 28 January 2023
Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $g_k$ monomials are defined by the recurrence $$\left\{ \begin{array}{ll} g_0(t,s)=1 \\ g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. \end{array} \right.$$
Properties
Zeros of delta gk
Relationship between delta hk and delta gk
Examples
$\mathbb{T}=$ | $g_k(t,t_0)=$ |
$\mathbb{R}$ | $g_k(t,t_0)=\dfrac{(t-t_0)^k}{k!}$ |
$\mathbb{Z}$ | $g_k(t,t_0)= $ |
$h\mathbb{Z}$ | $g_k(t,t_0)=$ |
$\mathbb{Z}^2$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $g_k(t,t_0)=$ |
$\mathbb{H}$ | $g_k(t,t_0)=$ |
See also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |