Difference between revisions of "Reciprocal of delta exponential"
From timescalewiki
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be a [[regressive function]]. The following formula holds: | |
− | $$\dfrac{1}{e_p(t,s)}=e_{\ominus p}(s,t),$$ | + | $$\dfrac{1}{e_p(t,s;\mathbb{T})}=e_{\ominus p}(s,t;\mathbb{T}),$$ |
− | where $e_p$ denotes the [[delta exponential]] and $\ominus | + | where $e_p$ denotes the [[delta exponential]] and $\ominus$ denotes [[circle minus]]. |
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 22:20, 9 June 2016
Theorem
Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be a regressive function. The following formula holds: $$\dfrac{1}{e_p(t,s;\mathbb{T})}=e_{\ominus p}(s,t;\mathbb{T}),$$ where $e_p$ denotes the delta exponential and $\ominus$ denotes circle minus.