Difference between revisions of "Hilger imaginary part"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $h>0$ and let $z \in \mathbb{C}_h$, the Hilger complex plane. The Hilger imaginary part of $z$ is defined by $$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$ where ...")
 
Line 2: Line 2:
 
$$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$
 
$$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$
 
where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).
 
where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following inequality holds for $z \in \mathbb{C}_h$:
 +
$$-\dfrac{\pi}{h} < \mathrm{Im}_h(z) \leq \dfrac{\pi}{h}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>

Revision as of 19:52, 29 December 2015

Let $h>0$ and let $z \in \mathbb{C}_h$, the Hilger complex plane. The Hilger imaginary part of $z$ is defined by $$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$ where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).

Properties

Theorem: The following inequality holds for $z \in \mathbb{C}_h$: $$-\dfrac{\pi}{h} < \mathrm{Im}_h(z) \leq \dfrac{\pi}{h}.$$

Proof: