Difference between revisions of "Quantum q less than 1"

From timescalewiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a [[time scale]].
+
Let $0<q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a [[time scale]].
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 61: Line 61:
 
|-
 
|-
 
|[[Gaussian bell]]
 
|[[Gaussian bell]]
|$\mathbf{E}(t)=$
+
|$\mathbf{E}(t)=\displaystyle\prod_{k=\log_q(t)+1}^{\infty} \dfrac{1}{\left(1+(\frac{1}{q}-1)q^k \right)^{q^k}}$
 
|[[Derivation of Gaussian bell for T=Quantum q greater than 1|derivation]]
 
|[[Derivation of Gaussian bell for T=Quantum q greater than 1|derivation]]
 
|-
 
|-

Latest revision as of 00:45, 9 September 2015

Let $0<q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a time scale.

$\mathbb{T}=\overline{q^{\mathbb{Z}}}$
Forward jump: $\sigma(t)=$ derivation
Forward graininess: $\mu(t)=$ derivation
Backward jump: $\rho(t)=$ derivation
Backward graininess: $\nu(t)=$ derivation
$\Delta$-derivative $f^{\Delta}(t)=$ derivation
$\nabla$-derivative $f^{\nabla}(t)=$ derivation
$\Delta$-integral $\displaystyle\int_s^t f(\tau) \Delta \tau=$ derivation
$\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation
$h_k(t,s)$ $h_k(t,s)=$ derivation
$\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation
$g_k(t,s)$ $g_k(t,s)=$ derivation
$\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation
$e_p(t,s)$ $e_p(t,s)=$ derivation
$\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation
Gaussian bell $\mathbf{E}(t)=\displaystyle\prod_{k=\log_q(t)+1}^{\infty} \dfrac{1}{\left(1+(\frac{1}{q}-1)q^k \right)^{q^k}}$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation
$\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation
$\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation
$\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation
$\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation
$\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation
$\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation
$\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation
$\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation
Gamma function $\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ derivation
Euler-Cauchy logarithm $L(t,s)=$ derivation
Bohner logarithm $L_p(t,s)=$ derivation
Jackson logarithm $\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ derivation
Mozyrska-Torres logarithm $L_{\overline{q^{\mathbb{Z}}}}(t)=$ derivation
Laplace transform $\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ derivation
Hilger circle derivation

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set