Difference between revisions of "Delta derivative"
(→Interesting Examples) |
(→Properties of the $\Delta$-derivative) |
||
Line 4: | Line 4: | ||
==Properties of the $\Delta$-derivative== | ==Properties of the $\Delta$-derivative== | ||
*If $f$ is $\Delta$-differentiable at $t$, then $f$is [[continuity | continuous]] at $t$. | *If $f$ is $\Delta$-differentiable at $t$, then $f$is [[continuity | continuous]] at $t$. | ||
− | *$f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t)$ | + | *If $f$ is continuous at $t$ and $t$ is right-scattered, then |
+ | $$f^{\Delta}(t) = \dfrac{f(\sigma(t))-f(t)}{\mu(t)}$$ | ||
+ | *If $t$ is right-dense, then (if it exists), | ||
+ | $$f^{\Delta}(t) = \displaystyle\lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$ | ||
+ | *If $f$ is differentiable at $t$, then | ||
+ | $$f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t)$$ | ||
*Sum rule: | *Sum rule: | ||
$$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t)$$ | $$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t)$$ |
Revision as of 21:13, 19 May 2014
Let $\mathbb{T}$ be a time_scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}^{\kappa}$. We define the $\Delta$-derivative of $f$ at $t$ to be the number $f^{\Delta}(t)$ (if it exists) so that there exists a $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap \mathbb{T}$, $$|[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]| \leq \epsilon |\sigma(t)-s|.$$
Properties of the $\Delta$-derivative
- If $f$ is $\Delta$-differentiable at $t$, then $f$is continuous at $t$.
- If $f$ is continuous at $t$ and $t$ is right-scattered, then
$$f^{\Delta}(t) = \dfrac{f(\sigma(t))-f(t)}{\mu(t)}$$
- If $t$ is right-dense, then (if it exists),
$$f^{\Delta}(t) = \displaystyle\lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$
- If $f$ is differentiable at $t$, then
$$f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t)$$
- Sum rule:
$$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t)$$
- Constant rule:if $\alpha$ is constant with respect to $t$, then
$$(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t)$$
- Product Rule I
$$(fg)^{\Delta}(t)=f^{\Delta}(t)g(t)+f(\sigma(t))g^{\Delta}(t))$$
- Product Rule II
$$(fg)^{\Delta}(t) = f(t)g^{\Delta}(t)+ f^{\Delta}(t)g(\sigma(t))$$
- Quotient Rule:
$$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{f^{\Delta}(t)g(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))}$$
Interesting Examples
The jump operator $\sigma$ is not $\Delta$-differentiable on all time scales. Consider $\mathbb{T}=[0,1] \bigcup \{2,3,4,\ldots\}$, then we see $$\sigma(t) = \left\{ \begin{array}{ll} 0 &; t \in [0,1) \\ 1 &; t \in \{1,2,3,\ldots\}. \end{array}\right.$$ This function is clearly not continuous at $t=1$ and hence it is not $\Delta$-differentiable at $t=1$.