Difference between revisions of "Expected value of uniform distribution"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> Let $X$ have the uniform di...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>[[Expected value of uniform distribution|Proposition]]:</strong> Let $X$ have the [[uniform distribution]] on $[a,b] \cap \mathbb{T}$. Then, | <strong>[[Expected value of uniform distribution|Proposition]]:</strong> Let $X$ have the [[uniform distribution]] on $[a,b] \cap \mathbb{T}$. Then, | ||
− | $$ | + | $$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a.$$ |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 22:00, 14 April 2015
Proposition: Let $X$ have the uniform distribution on $[a,b] \cap \mathbb{T}$. Then, $$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a.$$
Proof: █