Difference between revisions of "Exponential distribution"

From timescalewiki
Jump to: navigation, search
(Properties)
(Properties)
Line 8: Line 8:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> Let $X$ have the [[exponential distribution]] on $\mathbb{T}$. Then,
 
<strong>Theorem:</strong> Let $X$ have the [[exponential distribution]] on $\mathbb{T}$. Then,
$$E_{\mathbb{T}}(X)=\dfrac{1}{\lambda}.$$
+
$$\mathrm{E}_{\mathbb{T}}(X)=\dfrac{1}{\lambda}.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 16: Line 16:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> Let $X$ have the [[exponential distribution]] on $\mathbb{T}$. Then,
 
<strong>Theorem:</strong> Let $X$ have the [[exponential distribution]] on $\mathbb{T}$. Then,
$$Var_{\mathbb{T}}(X)=\dfrac{1}{\lambda^2}.$$
+
$$\mathrm{Var}_{\mathbb{T}}(X)=\dfrac{1}{\lambda^2}.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 21:59, 14 April 2015

Let $\mathbb{T}$ be a time scale. Let $\lambda > 0$ and $\ominus \lambda$ be positively $\mu$-regressive constant functions and let $t \in \mathbb{T}$. The exponential distribution is given by the probability density function $$f(t) = \left\{ \begin{array}{ll} -(\ominus \lambda)(t) e_{\ominus \lambda}(t,0) &; t \geq 0 \\ 0 &; t<0. \end{array} \right.$$

Properties

Theorem: Let $X$ have the exponential distribution on $\mathbb{T}$. Then, $$\mathrm{E}_{\mathbb{T}}(X)=\dfrac{1}{\lambda}.$$

Proof:

Theorem: Let $X$ have the exponential distribution on $\mathbb{T}$. Then, $$\mathrm{Var}_{\mathbb{T}}(X)=\dfrac{1}{\lambda^2}.$$

Proof:

References

[1]

Probability distributions

Uniform distributionExponential distributionGamma distribution