Difference between revisions of "Relationship between delta exponential and nabla exponential"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Relationship between delta exponential and nabla exponential|Theorem]]:</strong> If $p$ is [[continuous]] and [[mu regressive | $\mu$-regressive]] then
+
<strong>[[Relationship between delta exponential and nabla exponential|Theorem]]:</strong> If $q$ is [[continuous]] and [[mu regressive | $\mu$-regressive]] then
$$e_p(t,s)=\hat{e}_{\frac{p^{\rho}}{1+p^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-p^{\rho})}(t,s),$$
+
$$e_q(t,s)=\hat{e}_{\frac{q^{\rho}}{1+q^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-q^{\rho})}(t,s),$$
where $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]] and $\hat{e}$ denotes the [[nabla exponential|$\nabla$-exponential]].
+
where $e_q$ denotes the [[Delta exponential|$\Delta$-exponential]] and $\hat{e}_q$ denotes the [[nabla exponential|$\nabla$-exponential]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 09:29, 12 April 2015

Theorem: If $q$ is continuous and $\mu$-regressive then $$e_q(t,s)=\hat{e}_{\frac{q^{\rho}}{1+q^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-q^{\rho})}(t,s),$$ where $e_q$ denotes the $\Delta$-exponential and $\hat{e}_q$ denotes the $\nabla$-exponential.

Proof: