Difference between revisions of "Relationship between nabla derivative and delta derivative"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarro...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> Let $\mathbb{T}$ be a [[time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is [[Delta derivative|$\Delta$-differentiable]] and $f^{\Delta}$ is [[rd continous]] on $\mathbb{T}^{\kappa}$, then $f$ is [[nabla derivative|$\nabla$-differentiable]] on $\mathbb{T}_{\kappa}$ and  
+
<strong>[[Relationship between nabla derivative and delta derivative|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is [[Delta derivative|$\Delta$-differentiable]] and $f^{\Delta}$ is [[rd continous]] on $\mathbb{T}^{\kappa}$, then $f$ is [[nabla derivative|$\nabla$-differentiable]] on $\mathbb{T}_{\kappa}$ and  
 
$$f^{\nabla}(t) = f^{\Delta}(\rho(t)).$$
 
$$f^{\nabla}(t) = f^{\Delta}(\rho(t)).$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 09:05, 12 April 2015

Theorem: Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is $\Delta$-differentiable and $f^{\Delta}$ is rd continous on $\mathbb{T}^{\kappa}$, then $f$ is $\nabla$-differentiable on $\mathbb{T}_{\kappa}$ and $$f^{\nabla}(t) = f^{\Delta}(\rho(t)).$$

Proof: