Difference between revisions of "Delta Tschebycheff inequality"
From timescalewiki
m (Tom moved page Tschebycheff inequality to Delta Tschebycheff inequality) |
|||
Line 2: | Line 2: | ||
$$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$ | $$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$ | ||
where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$. | where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$. | ||
+ | |||
+ | {{:Delta inequalities footer}} |
Revision as of 23:38, 28 March 2015
Let $\mathbb{T}$ be a time scale and let $\epsilon > 0$. Then $$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$ where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$.
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |