Difference between revisions of "Delta Minkowski inequality"

From timescalewiki
Jump to: navigation, search
Line 9: Line 9:
 
==References==
 
==References==
 
[http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey]
 
[http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey]
 +
 +
{{:Delta inequalities footer}}

Revision as of 23:38, 28 March 2015

Theorem: Let $a,b \in \mathbb{T}$ and $p>1$. For rd-continuous $f,g \colon [a,b] \cap \mathbb{T} \rightarrow \mathbb{R}$ we have $$\left( \displaystyle\int_a^b |(f+g)(t)|^p \Delta t \right)^{\frac{1}{p}} \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(t)|^p \Delta t\right)^{\frac{1}{p}}.$$

Proof:

References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger