Difference between revisions of "Delta Tschebycheff inequality"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale and let $\epsilon > 0$. Then $$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\ma...")
 
(No difference)

Revision as of 23:28, 28 March 2015

Let $\mathbb{T}$ be a time scale and let $\epsilon > 0$. Then $$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$ where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$.