Difference between revisions of "Uniform distribution"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. Let $a,b \in \mathbb{T}$. The uniform distribution on the interval $[a,b] \cap \mathbb{T}$ is given by the formula $$U_{[a,b]}(t) = \left...")
 
Line 4: Line 4:
 
0 &; \mathrm{otherwise}
 
0 &; \mathrm{otherwise}
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
 +
{{:Probability distributions footer}}

Revision as of 18:49, 21 March 2015

Let $\mathbb{T}$ be a time scale. Let $a,b \in \mathbb{T}$. The uniform distribution on the interval $[a,b] \cap \mathbb{T}$ is given by the formula $$U_{[a,b]}(t) = \left\{ \begin{array}{ll} \dfrac{1}{\sigma(b)-a} &; a \leq t \leq b \\ 0 &; \mathrm{otherwise} \end{array} \right.$$

Probability distributions

Uniform distributionExponential distributionGamma distribution