Difference between revisions of "Time scale"
From timescalewiki
Line 1: | Line 1: | ||
− | A ''time scale'' is a set $\mathbb{T} \subset \mathbb{R}$. | + | A ''time scale'' is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Given a time scale we define the ''jump operator'' $\sigma \colon \mathbb{T} \rightarrow \mathbb{T}$ by the formula |
+ | $$\sigma(t) := \inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$ | ||
+ | The ''graininess operator'' is the function $\mu \colon \mathbb{T} \rightarrow \mathbb{R}^+ \cup \{0\}$ is defined by the formula | ||
+ | $$\mu(t) := \sigma(t)-t.$$ | ||
+ | |||
+ | == Examples of time scales == | ||
+ | # The real line $\mathbb{R}$ | ||
+ | # The integers $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$ | ||
+ | # Multiples of integers $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$ |
Revision as of 02:35, 18 May 2014
A time scale is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Given a time scale we define the jump operator $\sigma \colon \mathbb{T} \rightarrow \mathbb{T}$ by the formula $$\sigma(t) := \inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$ The graininess operator is the function $\mu \colon \mathbb{T} \rightarrow \mathbb{R}^+ \cup \{0\}$ is defined by the formula $$\mu(t) := \sigma(t)-t.$$
Examples of time scales
- The real line $\mathbb{R}$
- The integers $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
- Multiples of integers $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$