Difference between revisions of "Delta derivative"

From timescalewiki
Jump to: navigation, search
(Properties of the $\Delta$-derivativeBohner, Martin ; Peterson, Allan. Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001,p.8.)
Line 5: Line 5:
 
==Properties of the $\Delta$-derivative<ref>Bohner, Martin ; Peterson, Allan. Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001,p.8.</ref>==
 
==Properties of the $\Delta$-derivative<ref>Bohner, Martin ; Peterson, Allan. Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001,p.8.</ref>==
  
*If $f$ is $\Delta$-differentiable at $t$, then $f$ is [[continuity | continuous]] at $t$.
+
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
*If $f$ is continuous at $t$ and $t$ is right-scattered, then
+
<strong>Theorem:</strong> If $f$ is $\Delta$-differentiable at $t$, then $f$ is [[continuity | continuous]] at $t$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> If $f$ is continuous at $t$ and $t$ is right-scattered, then
 
$$f^{\Delta}(t) = \dfrac{f(\sigma(t))-f(t)}{\mu(t)}$$
 
$$f^{\Delta}(t) = \dfrac{f(\sigma(t))-f(t)}{\mu(t)}$$
*If $t$ is right-dense, then (if it exists),
+
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> If $t$ is right-dense, then (if it exists),
 
$$f^{\Delta}(t) = \displaystyle\lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$
 
$$f^{\Delta}(t) = \displaystyle\lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$
*If $f$ is differentiable at $t$, then
+
<div class="mw-collapsible-content">
$$f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t)$$
+
<strong>Proof:</strong>  █
*Sum rule:
+
</div>
$$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t)$$
+
</div>
*Constant rule:if $\alpha$ is constant with respect to $t$, then
+
 
$$(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t)$$
+
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
*Product Rule I
+
<strong>Theorem:</strong> If $f$ is differentiable at $t$, then
$$(fg)^{\Delta}(t)=f^{\Delta}(t)g(t)+f(\sigma(t))g^{\Delta}(t))$$
+
$$f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t).$$
*Product Rule II
+
<div class="mw-collapsible-content">
$$(fg)^{\Delta}(t) = f(t)g^{\Delta}(t)+ f^{\Delta}(t)g(\sigma(t))$$
+
<strong>Proof:</strong>  █
*Quotient Rule:
+
</div>
$$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{f^{\Delta}(t)g(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))}$$
+
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> Sum rule:
 +
$$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Constant rule):</strong> If $\alpha$ is constant with respect to $t$, then
 +
$$(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Product rule,I):</strong> The following formula holds:
 +
$$(fg)^{\Delta}(t)=f^{\Delta}(t)g(t)+f(\sigma(t))g^{\Delta}(t)).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$(fg)^{\Delta}(t) = f(t)g^{\Delta}(t)+ f^{\Delta}(t)g(\sigma(t)).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{f^{\Delta}(t)g(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
  
 
==Interesting Examples==
 
==Interesting Examples==

Revision as of 20:58, 20 October 2014

Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}^{\kappa}$. We define<ref>Bohner, Martin ; Peterson, Allan. Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001,p.5.</ref> the $\Delta$-derivative of $f$ at $t$ to be the number $f^{\Delta}(t)$ (if it exists) so that there exists a $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap \mathbb{T}$, $$|[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]| \leq \epsilon |\sigma(t)-s|.$$ We sometimes use the notation $\dfrac{\Delta}{\Delta t} f(t)$ or $\dfrac{\Delta f}{\Delta t}$ for $f^{\Delta}(t)$.

Properties of the $\Delta$-derivative<ref>Bohner, Martin ; Peterson, Allan. Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001,p.8.</ref>

Theorem: If $f$ is $\Delta$-differentiable at $t$, then $f$ is continuous at $t$.

Proof:

Theorem: If $f$ is continuous at $t$ and $t$ is right-scattered, then $$f^{\Delta}(t) = \dfrac{f(\sigma(t))-f(t)}{\mu(t)}$$

Proof:

Theorem: If $t$ is right-dense, then (if it exists), $$f^{\Delta}(t) = \displaystyle\lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$

Proof:

Theorem: If $f$ is differentiable at $t$, then $$f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t).$$

Proof:

Theorem: Sum rule: $$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t).$$

Proof:

Theorem (Constant rule): If $\alpha$ is constant with respect to $t$, then $$(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t).$$

Proof:

Theorem (Product rule,I): The following formula holds: $$(fg)^{\Delta}(t)=f^{\Delta}(t)g(t)+f(\sigma(t))g^{\Delta}(t)).$$

Proof:

Theorem: The following formula holds: $$(fg)^{\Delta}(t) = f(t)g^{\Delta}(t)+ f^{\Delta}(t)g(\sigma(t)).$$

Proof:

Theorem: The following formula holds: $$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{f^{\Delta}(t)g(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))}.$$

Proof:

Interesting Examples

  • The jump operator $\sigma$ is not $\Delta$-differentiable on all time scales. Consider $\mathbb{T}=[0,1] \bigcup \{2,3,4,\ldots\}$, then we see

$$\sigma(t) = \left\{ \begin{array}{ll} 0 &; t \in [0,1) \\ 1 &; t \in \{1,2,3,\ldots\}. \end{array}\right.$$ This function is clearly not continuous at $t=1$ and hence it is not $\Delta$-differentiable at $t=1$.


References

<references/>