Difference between revisions of "Delta Cauchy-Schwarz inequality"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have
+
<strong>Theorem:</strong> Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have
 
$$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$
 
$$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 04:36, 6 September 2014

Theorem: Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$

Proof:

References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey