Difference between revisions of "Hilger imaginary part"

From timescalewiki
Jump to: navigation, search
(Properties)
 
(5 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Range of Hilger imaginary part]]<br />
<strong>Theorem:</strong> The following inequality holds for $z \in \mathbb{C}_h$:
+
[[Limit of Hilger real and imag parts yields classical]]<br />
$$-\dfrac{\pi}{h} < \mathrm{Im}_h(z) \leq \dfrac{\pi}{h}.$$
+
[[Hilger real part oplus Hilger imaginary part equals z]]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
{{:Limit of Hilger real and imag parts yields classical}}
+
=References=
 +
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger real part|next=Hilger pure imaginary}}: Definition 2.3
 +
 
 +
[[Category:Definition]]
 +
 
 +
<center>{{:Hilger complex plane footer}}</center>

Latest revision as of 15:40, 21 January 2023

Let $h>0$ and let $z \in \mathbb{C}_h$, the Hilger complex plane. The Hilger imaginary part of $z$ is defined by $$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$ where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).

Properties

Range of Hilger imaginary part
Limit of Hilger real and imag parts yields classical
Hilger real part oplus Hilger imaginary part equals z

References

Hilger complex plane and friends

$\Huge\mathbb{A}_h$
Hilger alternating axis
$\Huge\mathbb{I}_h$
Hilger circle
$\Huge\mathbb{C}_h$
Hilger complex plane
$\Huge\mathrm{Im}_h$
Hilger imaginary part
$\Huge\mathring{\iota}$
Hilger pure imaginary
$\Huge\mathbb{R}_h$
Hilger real axis
$\Huge\mathrm{Re}_h$
Hilger real part