Difference between revisions of "Hilger circle"
From timescalewiki
Line 8: | Line 8: | ||
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger alternating axis|next=Hilger real part}}: Definition 2.2 | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Hilger alternating axis|next=Hilger real part}}: Definition 2.2 | ||
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger alternating axis|next=Cylinder strip}}: Definition $2.2$ | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger alternating axis|next=Cylinder strip}}: Definition $2.2$ | ||
+ | |||
+ | [[Category:Definition]] |
Revision as of 15:29, 21 January 2023
Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ denotes the Hilger complex plane.
Properties
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (previous)... (next): Definition 2.2
- Robert J. Marks II, Ian A. Gravagne and John M. Davis: A generalized Fourier transform and convolution on time scales (2008)... (previous)... (next): Definition $2.2$