Difference between revisions of "Forward circle minus"

From timescalewiki
Jump to: navigation, search
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| regressive]]. We define the (forward) circle minus operation $\ominus_{\mu}$
+
Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| (forward) regressive functions ]]. We define the (forward) circle minus operation by
$$\ominus_h z = \dfrac{-z}{1+zh}.$$
+
$$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$
 +
Often in the literature, the subscript is suppressed.
  
 
=Properties=
 
=Properties=
{{:Circle minus inverse of circle plus}}
+
[[Forward regressive functions form a group]]<br />
 +
[[Circle minus inverse of circle plus]]<br />
 +
 
 +
=See Also=
 +
[[Delta exponential]]<br />
 +
 
 +
=References=
 +
 
 +
[[Category:Definition]]

Latest revision as of 15:26, 21 January 2023

Let $\mathbb{T}$ be a time scale and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be (forward) regressive functions . We define the (forward) circle minus operation by $$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$ Often in the literature, the subscript is suppressed.

Properties

Forward regressive functions form a group
Circle minus inverse of circle plus

See Also

Delta exponential

References