Difference between revisions of "Wronskian"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. Consider the dynamic equation $$y^{\Delta \Delta} + p(t)y^{\Delta} + q(t) y = f(t),$$ where $p,q,$ and $f$ are Continuity | rd-Continuo...")
 
 
Line 6: Line 6:
 
y_1^{\Delta}(t) & y^{\Delta}_2(t)
 
y_1^{\Delta}(t) & y^{\Delta}_2(t)
 
\end{array} \right].$$
 
\end{array} \right].$$
 +
 +
=Properties=
 +
[[Abel's theorem]]
 +
 +
=References=
 +
 +
[[Category:Definition]]

Latest revision as of 15:20, 21 January 2023

Let $\mathbb{T}$ be a time scale. Consider the dynamic equation $$y^{\Delta \Delta} + p(t)y^{\Delta} + q(t) y = f(t),$$ where $p,q,$ and $f$ are rd-Continuous. For two $\Delta$-differentiable functions $y_1$ and $y_2$ define the Wronskian $W=W(y_1,y_2)$ by $$W(t) = \mathrm{det} \left[ \begin{array}{ll} y_1(t) & y_2(t) \\ y_1^{\Delta}(t) & y^{\Delta}_2(t) \end{array} \right].$$

Properties

Abel's theorem

References