Difference between revisions of "Wronskian"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. Consider the dynamic equation $$y^{\Delta \Delta} + p(t)y^{\Delta} + q(t) y = f(t),$$ where $p,q,$ and $f$ are Continuity | rd-Continuo...") |
|||
Line 6: | Line 6: | ||
y_1^{\Delta}(t) & y^{\Delta}_2(t) | y_1^{\Delta}(t) & y^{\Delta}_2(t) | ||
\end{array} \right].$$ | \end{array} \right].$$ | ||
+ | |||
+ | =Properties= | ||
+ | [[Abel's theorem]] | ||
+ | |||
+ | =References= | ||
+ | |||
+ | [[Category:Definition]] |
Latest revision as of 15:20, 21 January 2023
Let $\mathbb{T}$ be a time scale. Consider the dynamic equation $$y^{\Delta \Delta} + p(t)y^{\Delta} + q(t) y = f(t),$$ where $p,q,$ and $f$ are rd-Continuous. For two $\Delta$-differentiable functions $y_1$ and $y_2$ define the Wronskian $W=W(y_1,y_2)$ by $$W(t) = \mathrm{det} \left[ \begin{array}{ll} y_1(t) & y_2(t) \\ y_1^{\Delta}(t) & y^{\Delta}_2(t) \end{array} \right].$$