Difference between revisions of "Diamond alpha Minkowski's inequality"
From timescalewiki
Line 2: | Line 2: | ||
If $\mathbb{T}$ is a [[time scale]], $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then | If $\mathbb{T}$ is a [[time scale]], $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then | ||
$$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}},$$ | $$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}},$$ | ||
− | where $\displaystyle\int$ denotes the [[diamond alpha integral]]. | + | where $\displaystyle\int \ldots \Diamond_{\alpha} x$ denotes the [[diamond alpha integral]]. |
=References= | =References= | ||
[http://arxiv.org/pdf/0712.1680.pdf] | [http://arxiv.org/pdf/0712.1680.pdf] |
Latest revision as of 15:17, 21 January 2023
Theorem
If $\mathbb{T}$ is a time scale, $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then $$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}},$$ where $\displaystyle\int \ldots \Diamond_{\alpha} x$ denotes the diamond alpha integral.